Caveolin-1 and dopamine-mediated internalization of NaKATPase in human renal proximal tubule cells.
نویسندگان
چکیده
In moderate sodium-replete states, dopamine 1-like receptors (D1R/D5R) are responsible for regulating >50% of renal sodium excretion. This is partly mediated by internalization and inactivation of NaKATPase, when associated with adapter protein 2. We used dopaminergic stimulation via fenoldopam (D1-like receptor agonist) to study the interaction among D1-like receptors, caveolin-1 (CAV1), and the G protein-coupled receptor kinase type 4 in cultured human renal proximal tubule cells (RPTCs). We compared 2 groups of RPTCs, 1 of cell lines that were isolated from normal subjects (nRPTCs) and a second group of cell lines that have D1-like receptors that are uncoupled (uncoupled RPTCs) from adenylyl cyclase second messengers. In nRPTCs, fenoldopam increased the plasma membrane expression of D1R (10.0-fold) and CAV1 (1.3-fold) and markedly decreased G protein-coupled receptor kinase type 4 by 94+/-8%; no effects were seen in uncoupled RPTCs. Fenoldopam also increased the association of adapter protein 2 and NaKATPase by 53+/-9% in nRPTCs but not in uncoupled RPTCs. When CAV1 expression was reduced by 86.0+/-8.5% using small interfering RNA, restimulation of the D1-like receptors with fenoldopam in nRPTCs resulted in only a 7+/-9% increase in association between adapter protein 2 and NaKATPase. Basal CAV1 expression and association with G protein-coupled receptor kinase type 4 was decreased in uncoupled RPTCs (58+/-5% decrease in association) relative to nRPTCs. We conclude that the scaffolding protein CAV1 is necessary for the association of D1-like receptors with G protein-coupled receptor kinase type 4 and the adapter protein 2-associated reduction in plasma membrane NaKATPase.
منابع مشابه
Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells.
The Na(+)/phosphate cotransporter NaPi-IIa (SLC34A1) is the major transporter mediating the reabsorption of P(i) in the proximal tubule. Expression and activity of NaPi-IIa is regulated by several factors, including parathyroid hormone, dopamine, metabolic acidosis, and dietary P(i) intake. Dopamine induces natriuresis and phosphaturia in vivo, and its actions on several Na(+)-transporting syst...
متن کاملDopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.
Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium re...
متن کاملThe cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport
Determining the individual roles of the two dopamine D1-like receptors (D1R and D5R) on sodium transport in the human renal proximal tubule has been complicated by their structural and functional similarity. Here we used a novel D5R-selective antagonist (LE-PM436) and D1R- or D5R-specific gene silencing to determine second messenger coupling pathways and heterologous receptor interaction betwee...
متن کاملInhibition of renal caveolin-1 reduces natriuresis and produces hypertension in sodium-loaded rats.
Renal dopamine receptor function and ion transport inhibition are impaired in essential hypertension. We recently reported that caveolin-1 (CAV1) and lipid rafts are necessary for normal D(1)-like receptor-dependent internalization of Na-K-ATPase in human proximal tubule cells. We now hypothesize that CAV1 is necessary for the regulation of urine sodium (Na(+)) excretion (U(Na)V) and mean arter...
متن کاملNegative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells.
Sodium excretion is bidirectionally regulated by dopamine, acting on D1-like receptors (D1R) and angiotensin II, acting on AT1 receptors (AT1R). Since sodium excretion has to be regulated with great precision within a short frame of time, we tested the short-term effects of agonist binding on the function of the reciprocal receptor within the D1R-AT1R complex in renal proximal tubule cells. Exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 54 5 شماره
صفحات -
تاریخ انتشار 2009